INVERSE FUNCTION
INVERSE FUNCTION
INVERSE FUNCTION
INVERSE FUNCTION

INVERSE FUNCTION

CONTENT

INTRODUCTION     |   FUNCTION OF A REAL VARIABLE   |   TYPES OF FUNCTIONS      ANTI-FUNCTION OR INVERSE FUNCTIONS   |   BASIC FUNCTIONS   |   LIMIT OF FUNCTIONS OF REAL VARIABLES

In mathematics, an inverse function (or anti-function) is a function that "reverses" another function: if the function f applied to an input x gives a result of y, then applying its inverse function g to y gives the result x, and vice versa, i.e., f(x) = y if and only if g(y) = x.

Example; Let F:R – be defined by f(x) = 2x + 1 show that f-1 is defined by f-1 = ½ (x -1)

Solution

Let f(x) = y,

then y = 2x + 1

Make x subject of formular

 x =  (y-1)/2

Therefore f-1 (x) = ½ (x-1).

        F.f-1= I

The diagrammatic representative of an anti-function or inverse function is;

Generally we have;

 


Click